A two-level learning hierarchy for constructing incremental projection generalizing neural networks
نویسندگان
چکیده
One of incremental learning-based neural networks that theoretically guarantees the optimal generalization capability and provides exactly the same generalization capability as that obtained by batch learning is incremental projection generalizing neural networks. This paper will describe a two-level learning hierarchy for constructing the networks. An incremental projection learning in neural networks algorithm is employed at the lower level to construct the network while the learning parameters, the orders of the reproducing kernel Hilbert space, are optimized using a genetic algorithm at the upper level. The networks produced by this learning hierarchy will be used as subsystem of the artificial odor discrimination system to approximate percentage of alcohol. Key-Words: incremental learning, incremental projection generalizing neural networks, genetic algorithm, artificial odor discrimination system
منابع مشابه
Incremental Construction of Projection Generalizing Neural Networks
In many practical situations in NN learning, training examples tend to be supplied one by one. In such situations, incremental learning seems more natural than batch learning in view of the learning methods of human beings. In this paper, we propose an incremental learning method in neural networks under the projection learning criterion. Although projection learning is a linear learning method...
متن کاملA Computational Study of Incremental Projection Learning in Neural Networks
One of the essences of supervised learning in neural network is generalization capability. It is an ability to give an accurate result for data that are not learned in learning process. One of supervised learning method that theoretically guarantees the optimal generalization capability is projection learning. The method was formulated as inverse problem from functional analytic point of view i...
متن کاملProperties of incremental projection learning
We proposed a method of incremental projection learning which provides exactly the same generalization capability as that obtained by batch projection learning in the previous paper. However, properties of the method have not yet been investigated. In this paper, we analyze its properties from the following aspects: First, it is shown that some of the training data which is regarded as redundan...
متن کاملIncremental projection learning for optimal generalization
In many practical situations in neural network learning, it is often expected to further improve the generalization capability after the learning process has been completed. One of the common approaches is to add training data to the neural network. In view of the learning methods of human beings, it seems natural to build posterior learning results upon prior results, which is generally referr...
متن کاملPerformance comparison of land change modeling techniques for land use projection of arid watersheds
The change of land use/land cover has been known as an imperative force in environmental alteration, especially in arid and semi-arid areas. This research was mainly aimed to assess the validity of two major types of land change modeling techniques via a three dimensional approach in Birjand urban watershed located in an arid climatic region of Iran. Thus, a Markovian approach based on two suit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002